Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e28067, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560166

RESUMEN

In this study, we investigated the ethanolic extraction of the leaves of a very common but little studied plant species, Elaeagnus x submacrophylla Servett. and the opportunity of generating an antioxidant ingredient. The phytochemical profile of an ethanolic extract is also described here using gas chromatography and ultra-performance liquid chromatography, both combined with mass spectrometry (GC-MS and UPLC-MS), highlighting the presence of flavonoids, saponins, triterpenoids and a set of volatile compounds. Through in vitro assays (DPPH, ABTS, ORAC), the free radical scavenging capacity of the ingredient was then investigated (from 0.25 to 1.75 mmol TE/g) and compared with well-known standard antioxidants (BHT, gallic acid, quercetin, Trolox and vitamin C). In addition, in cellulo antioxidant capacity was performed using mice fibroblasts, revealing an activity equivalent to 50 mg/L of quercetin when tested the ethanolic extract in the concentration range of 50-300 mg/L, suggesting a synergistic combination effect of the identified phytochemicals. These results support the use of Elaeagnus x submacrophylla as a source of antioxidant ingredients.

2.
Int J Pharm ; 654: 123937, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38401873

RESUMEN

The trial-and-error method currently used to create formulations with excellent printability demands considerable time and resources, primarily due to the increasing number of variables involved. Rheology serves as a relatively rapid and highly beneficial method for assessing materials and evaluating their effectiveness as 3D constructs. However, the data obtained can be overwhelming, especially for users lacking experience in this field. This study examined the rheological properties of formulations of agar, hydroxypropyl methylcellulose, and the model drug caffeine, alongside exploring their printability as gummy formulations. The gels' rheological properties were characterized using oscillatory and rotational experiments. The correlation between these gels' rheological properties and their printability was established, and three clusters were formed based on the rheological properties and printability of the samples using principal component analysis. Furthermore, the printability was predicted using the sample's rheological property that correlated most with printability, the phase angle δ, and the regression models resulted in an accuracy of over 80%. Although these relationships merit confirmation in later studies, this study suggests a quantitative definition of the relationship between printability and one rheological property and can be used for the development of formulations destined for extrusion 3D printing.


Asunto(s)
Impresión Tridimensional , Agar , Derivados de la Hipromelosa , Geles , Composición de Medicamentos , Reología
3.
Int J Pharm ; 651: 123740, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38145781

RESUMEN

Drugs with properties against oxidative and carbonyl stresses are potential candidates to prevent dry age-related macular degeneration (Dry-AMD) and inherited Stargardt disease (STGD1). Previous studies have demonstrated the capacity of a new lipophenol drug: 3-O-DHA-7-O-isopropyl-quercetin (Q-IP-DHA) to protect ARPE19 and primary rat RPE cells respectively from A2E toxicity and under oxidative and carbonyl stress conditions. In this study, first, a new methodology has been developed to access gram scale of Q-IP-DHA. After classification of the lipophenol as BCS Class IV according to physico-chemical and biopharmaceutical properties, an intravenous formulation with micelles (M) and an oral formulation using lipid nanocapsules (LNC) were developed. M were formed with Kolliphor® HS 15 and saline solution 0.9 % (mean size of 16 nm, drug loading of 95 %). The oral formulation was optimized and successfully allowed the formation of LNC (25 nm, 96 %). The evaluation of the therapeutic potency of Q-IP-DHA was performed after IV administration of micelles loaded with Q-IP-DHA (M-Q-IP-DHA) at 30 mg/kg and after oral administration of LNC loaded with Q-IP-DHA (LNC-Q-IP-DHA) at 100 mg/kg in mice. Results demonstrated photoreceptor protection after induction of retinal degeneration by acute light stress making Q-IP-DHA a promising preventive candidate against dry-AMD and STGD1.


Asunto(s)
Degeneración Macular , Nanocápsulas , Ratones , Ratas , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Micelas , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/prevención & control , Oxidación-Reducción , Nanocápsulas/química , Epitelio Pigmentado de la Retina , Estrés Oxidativo
4.
AAPS PharmSciTech ; 24(5): 122, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225888

RESUMEN

Apnea of prematurity can be treated with a body-weight-adjusted dosage of caffeine. Semi-solid extrusion (SSE) 3D printing represents an interesting approach to finely tailor personalized doses of active ingredients. To improve compliance and ensure the right dose in infants, drug delivery systems such as oral solid forms (orodispersible film, dispersive form, and mucoadhesive form) can be considered. The aim of this work was to obtain a flexible-dose system of caffeine by SSE 3D printing by testing different excipients and printing parameters. Gelling agents (sodium alginate (SA) and hydroxypropylmethyl cellulose (HPMC)) were used to obtain a drug-loaded hydrogel matrix. Disintegrants (sodium croscarmellose (SC) and crospovidone (CP)) were tested for get rapid release of caffeine. The 3D models were patterned by computer-aided design with variable thickness, diameter, infill densities, and infill patterns. The oral forms produced from the formulation containing 35% caffeine, 8.2% SA, 4.8% HPMC, and 52% SC (w/w) were found to have good printability, achieving doses approaching to those used in neonatology (between 3 and 10 mg of caffeine for infants weighing approximately between 1 and 4 kg). However, disintegrants, especially SC, acted more as binder/filler, showing interesting properties to maintain the shape after extrusion and enhance printability without a significant effect on caffeine release.


Asunto(s)
Cafeína , Excipientes , Lactante , Recién Nacido , Humanos , Alginatos , Diseño Asistido por Computadora , Derivados de la Hipromelosa , Impresión Tridimensional
5.
Pharmaceutics ; 14(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35631617

RESUMEN

Dry age-related macular degeneration (Dry AMD) and Stargardt's disease (STGD1) are common eye diseases, characterized by oxidative and carbonyl stress (COS)-inducing photoreceptor degeneration and vision loss. Previous studies have demonstrated the protective effect of photoreceptors after the intravenous administration of a new lipophenol drug, phloroglucinol-isopropyl-DHA (IP-DHA). In this study, we developed an oral formulation of IP-DHA (BCS Class IV) relying on a self-nanoemulsifying drug delivery system (SNEDDS). SNEDDS, composed of Phosal® 53 MCT, Labrasol®, and Transcutol HP® at a ratio of 25/60/15 (w/w/w), led to a homogeneous nanoemulsion (NE) with a mean size of 53.5 ± 4.5 nm. The loading of IP-DHA in SNEDDS (SNEDDS-IP-DHA) was successful, with a percentage of IP-DHA of 99.7% in nanoemulsions. The in vivo study of the therapeutic potency of SNEDDS-IP-DHA after oral administration on mice demonstrated photoreceptor protection after the induction of retinal degeneration with acute light stress (73-80%) or chronic light stress (52-69%). Thus, SNEDDS formulation proved to increase the solubility of IP-DHA, improving its stability in intestinal media and allowing its passage through the intestinal barrier after oral force-fed administration, while maintaining its biological activity. Therefore, SNEDDS-IP-DHA is a promising future preventive treatment for dry AMD and STGD1.

6.
Materials (Basel) ; 13(16)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806728

RESUMEN

A novel bio-hybrid drug delivery system was obtained involving a Mg/Al-NO3 layered double hydroxide (LDH) intercalated either with ibuprofenate anions (IBU) or a phospholipid bilayer (BL) containing a neutral drug, i.e., 17ß-estradiol, and then embedded in chitosan beads. The combination of these components in a hierarchical structure led to synergistic effects investigated through characterization of the intermediates and the final bio-composites by XRD, TG, SEM, and TEM. That allowed determining the presence and yield of IBU and of BL in the interlayer space of LDH, and of the encapsulated LDH in the beads, as well as the morphology of the latter. Peculiar attention has been paid to the intercalation process of the BL for which all available data substantiate the hypothesis of a first interaction at the defect of the LDH, as well as on the interaction mode of these components. 1H, 31P and 27Al MAS-NMR studies allowed establishing that the intercalated BL is not homogeneous and likely formed patches. Release kinetics were performed for sodium ibuprofenate as well as for the association of 17ß-estradiol within the negatively charged BL, each encapsulated in the LDH/chitosan hybrid materials. Such new bio-hybrids offer an interesting outlook into the pharmaceutical domain with the ability to be used as sustained release systems for a wide variety of anionic and, importantly, neutral drugs.

7.
Int J Pharm Investig ; 7(4): 155-163, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29692974

RESUMEN

OBJECTIVE: EAPB0503, lead compound of imiqualines, presented high antitumor activities but also a very low water solubility which was critical for further preclinical studies. To apply to EAPB0503, a robust and safe lipid formulation already used for poor soluble anticancer agents for injectable administration at a concentration higher than 1 mg/mL. MATERIALS AND METHODS: Physicochemical properties of EAPB0503 were determined to consider an adapted formulation. In a second time, lipid nanocapsules (LNC) formulations based on the phase-inversion process were developed for EAPB0503 encapsulation. Then, EAPB0503 loaded-LNC were tested in vitro on different cell lines and compared to standard EAPB0503 solutions. RESULTS: Optimized EAPB0503 LNC displayed an average size of 111.7 ± 0.9 nm and a low polydispersity index of 0.059 ± 0.002. The obtained loading efficiency was higher than 96% with a drug loading of 1.7 mg/mL. A stability study showed stability during 4 weeks stored at 25°C. In vitro results highlighted similar efficiencies between LNC and standard EAPB0503 solutions prepared in dimethyl sulfoxide. CONCLUSION: In view of results obtained for loading efficiency and drug loading, the use of a LNC formulation is very interesting to permit the solubilization of a lipophilic drug and to improve its bioavailability. Preliminary tested pharmaceutical formulation applied to EAPB0503 significantly improved its water solubility and will be soon considered for future preclinical in vivo studies.

8.
Acta Biomater ; 41: 342-50, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27282646

RESUMEN

UNLABELLED: Benzoxaboroles are a family of molecules that are finding an increasing number of applications in the biomedical field, particularly as a "privileged scaffold" for the design of new drugs. Here, for the first time, we determine the interaction of these molecules with hydroxyapatites, in view of establishing (i) how benzoxaborole drugs may adsorb onto biological apatites, as this could impact on their bioavailability, and (ii) how apatite-based materials can be used for their formulation. Studies on the adsorption of the benzoxaborole motif (C7H7BO2, referred to as BBzx) on two different apatite phases were thus performed, using a ceramic hydroxyapatite (HAceram) and a nanocrystalline hydroxyapatite (HAnano), the latter having a structure and composition more similar to the one found in bone mineral. In both cases, the grafting kinetics and mechanism were studied, and demonstration of the surface attachment of the benzoxaborole under the form of a tetrahedral benzoxaborolate anion was established using (11)B solid state NMR (including (11)B-(31)P correlation experiments). Irrespective of the apatite used, the grafting density of the benzoxaborolates was found to be low, and more generally, these anions demonstrated a poor affinity for apatite surfaces, notably in comparison with other anions commonly found in biological media, such as carboxylates and (organo)phosphates. The study was then extended to the adsorption of a molecule with antimicrobial and antifungal properties (3-piperazine-bis(benzoxaborole)), showing, on a more general perspective, how hydroxyapatites can be used for the development of novel formulations of benzoxaborole drugs. STATEMENT OF SIGNIFICANCE: Benzoxaboroles are an emerging family of molecules which have attracted much attention in the biomedical field, notably for the design of new drugs. However, the way in which these molecules, once introduced in the body, may interact with bone mineral is still unknown, and the possibility of associating benzoxaboroles to calcium phosphates for drug-formulation purposes has not been looked into. Here, we describe the first study of the adsorption of benzoxaboroles on hydroxyapatite, which is the main mineral phase present in bone. We describe the mode of grafting of benzoxaboroles on this material, and show that they only weakly bind to its surface, especially in comparison to other ionic species commonly found in physiological media, such as phosphates and carboxylates. This demonstrates that administered benzoxaborole drugs are unlikely to remain adsorbed on hydroxyapatite surfaces for long periods of time, which means that their biodistribution will not be affected by such phenomena. Moreover, this work shows that the formulation of benzoxaborole drugs by association to calcium phosphates like hydroxyapatite will lead to a rapid release of the molecules.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Durapatita/química , Adsorción , Cinética , Espectroscopía de Resonancia Magnética , Difracción de Rayos X
9.
J Mater Chem B ; 4(2): 257-272, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-32263368

RESUMEN

Benzoxaboroles are a family of organoboron molecules, which have been finding over the past few years an increasing number of biological applications, notably for the design of new drugs. Given that these molecules are still relatively new in the biomedical context, very few investigations regarding their formulation have been reported to date. Here, a complete study on the formulation of benzoxaboroles in a biopolymer, poly-l-lactic acid (PLLA), is reported. The incorporation of two small benzoxaboroles, namely the simplest benzoxaborole molecule (BBzx) and the antifungal drug tavaborole (AN2690), inside PLLA films was investigated. Different variations in the film composition and texture were looked into, by performing a heat-treatment on the PLLA films, or by preparing PLLA-PEO (polyethylene oxide) blends or PLLA-LDH (layered double hydroxide) composites. In each case, the impact of these changes in formulation on the local environment of the benzoxaboroles in the material (as determined by multinuclear solid state NMR), and on the kinetics of release in physiological media were analyzed, showing that a variety of release profiles could be achieved. Finally, cellular assays were carried out looking at the migration of MDA-MB-231 cancer cells. These tests revealed for the first time that benzoxaboroles like AN2690 and BBzx inhibited the migration of these cells. Moreover, the molecules incorporated in the films were found to remain active, and their effect on cancer cells was directly related to the release kinetics from the films. All in all, PLLA-based materials appear as highly versatile and attractive matrices for formulating benzoxaborole-based drugs.

10.
Eur J Pharm Biopharm ; 92: 216-27, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25796349

RESUMEN

Dendritic cells (DCs) are professional antigen-presenting cells that play a critical role in maintaining the balance between immunity and tolerance and, as such are a promising immunotherapy tool to induce immunity or to restore tolerance. The main challenge to harness the tolerogenic properties of DCs is to preserve their immature phenotype. We recently developed polyion complex micelles, formulated with double hydrophilic block copolymers of poly(methacrylic acid) and poly(ethylene oxide) blocks and able to entrap therapeutic molecules, which did not induce DC maturation. In the current study, the intrinsic destabilizing membrane properties of the polymers were used to optimize endosomal escape property of the micelles in order to propose various strategies to restore tolerance. On the first hand, we showed that high molecular weight (Mw) copolymer-based micelles were efficient to favor the release of the micelle-entrapped peptide into the endosomes, and thus to improve peptide presentation by immature (i) DCs. On the second hand, we put in evidence that low Mw copolymer-based micelles were able to favor the cytosolic release of micelle-entrapped small interfering RNAs, dampening the DCs immunogenicity. Therefore, we demonstrate the versatile use of polyionic complex micelles to preserve tolerogenic properties of DCs. Altogether, our results underscored the potential of such micelle-loaded iDCs as a therapeutic tool to restore tolerance in autoimmune diseases.


Asunto(s)
Células Dendríticas/inmunología , Péptidos/administración & dosificación , Polímeros/química , ARN Interferente Pequeño/administración & dosificación , Endosomas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Tolerancia Inmunológica , Micelas , Peso Molecular , Polietilenglicoles/química , Ácidos Polimetacrílicos/química
11.
Int J Pharm ; 454(2): 611-20, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23792466

RESUMEN

Poly(methacrylic acid)-b-poly(ethylene oxide) are double hydrophilic block copolymers, which are able to form micelles by complexation with a counter-polycation, such as poly-l-lysine. A study was carried out on the ability of the copolymers to interact with model membranes as a function of their molecular weights and as a function of pH. Different behaviors were observed: high molecular weight copolymers respect the membrane integrity, whereas low molecular weight copolymers with a well-chosen asymmetry degree can induce a membrane alteration. Hence by choosing the appropriate molecular weight, micelles with distinct membrane interaction behaviors can be obtained leading to different intracellular traffics with or without endosomal escape, making them interesting tools for cell engineering. Especially micelles constituted of low molecular weight copolymers could exhibit the endosomal escape property, which opens vast therapeutic applications. Moreover micelles possess a homogeneous nanometric size and show variable properties of disassembly at acidic pH, of stability in physiological conditions, and finally of cyto-tolerance.


Asunto(s)
Sistemas de Liberación de Medicamentos , Micelas , Polietilenglicoles/química , Ácidos Polimetacrílicos/química , Animales , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Células HEK293 , Hemoglobinas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Liposomas , Membranas Artificiales , Ratones , Ratones Endogámicos C57BL , Peso Molecular , Polietilenglicoles/farmacología , Ácidos Polimetacrílicos/farmacología
12.
Chemistry ; 19(3): 880-91, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23280706

RESUMEN

Boronic acids (R-B(OH)(2)) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R-B(OH)(3)(-)) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C(4)H(9)-B(OH)(3)](2), which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid-state NMR spectroscopy ((1)H, (13)C, (11)B and (43)Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave--GIPAW--method). These data allow relationships between the geometry around the OH groups in boronates and the IR and (1)H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic-inorganic materials containing boronate building blocks.


Asunto(s)
Ácidos Borónicos/química , Teoría Cuántica , Ligandos , Espectroscopía de Resonancia Magnética , Espectrofotometría Infrarroja
13.
J Am Chem Soc ; 133(42): 16815-27, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-21899369

RESUMEN

In the context of nanomedicine, liposils (liposomes and silica) have a strong potential for drug storage and release schemes: such materials combine the intrinsic properties of liposome (encapsulation) and silica (increased rigidity, protective coating, pH degradability). In this work, an original approach combining solid state NMR, molecular dynamics, first principles geometry optimization, and NMR parameters calculation allows the building of a precise representation of the organic/inorganic interface in liposils. {(1)H-(29)Si}(1)H and {(1)H-(31)P}(1)H Double Cross-Polarization (CP) MAS NMR experiments were implemented in order to explore the proton chemical environments around the silica and the phospholipids, respectively. Using VASP (Vienna Ab Initio Simulation Package), DFT calculations including molecular dynamics, and geometry optimization lead to the determination of energetically favorable configurations of a DPPC (dipalmitoylphosphatidylcholine) headgroup adsorbed onto a hydroxylated silica surface that corresponds to a realistic model of an amorphous silica slab. These data combined with first principles NMR parameters calculations by GIPAW (Gauge Included Projected Augmented Wave) show that the phosphate moieties are not directly interacting with silanols. The stabilization of the interface is achieved through the presence of water molecules located in-between the head groups of the phospholipids and the silica surface forming an interfacial H-bonded water layer. A detailed study of the (31)P chemical shift anisotropy (CSA) parameters allows us to interpret the local dynamics of DPPC in liposils. Finally, the VASP/solid state NMR/GIPAW combined approach can be extended to a large variety of organic-inorganic hybrid interfaces.


Asunto(s)
Cápsulas/química , Liposomas/química , Teoría Cuántica , Dióxido de Silicio/química , Microscopía Electrónica de Rastreo , Estructura Molecular , Propiedades de Superficie
14.
Inorg Chem ; 50(16): 7802-10, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21755936

RESUMEN

We describe the preparation of the first crystalline compounds based on arylboronate ligands PhB(OH)(3)(-) coordinated to metal cations: [Ca(PhB(OH)(3))(2)], [Sr(PhB(OH)(3))(2)]·H(2)O, and [Ba(PhB(OH)(3))(2)]. The calcium and strontium structures were solved using powder and single-crystal X-ray diffraction, respectively. In both cases, the structures are composed of chains of cations connected through phenylboronate ligands, which interact one with each other to form a 2D lamellar structure. The temperature and pH conditions necessary for the formation of phase-pure compounds were investigated: changes in temperature were found to mainly affect the morphology of the crystallites, whereas strong variations in pH were found to affect the formation of pure phases. All three compounds were characterized using a wide range of analytical techniques (TGA, IR, Raman, XRD, and high resolution (1)H, (11)B, and (13)C solid-state NMR), and the different coordination modes of phenylboronate ligands were analyzed. Two different kinds of hydroxyl groups were identified in the structures: those involved in hydrogen bonds, and those that are effectively "free" and not involved in hydrogen bonds of any significant strength. To position precisely the OH protons within the structures, an NMR-crystallography approach was used: the comparison of experimental and calculated NMR parameters (determined using the Gauge Including Projector Augmented Wave method, GIPAW) allowed the most accurate positions to be identified. In the case of the calcium compound, it was found that it is the (43)Ca NMR data that are critical to help identify the best model of the structure.


Asunto(s)
Ácidos Borónicos/química , Complejos de Coordinación/síntesis química , Metales Alcalinotérreos/química , Cationes , Complejos de Coordinación/química , Cristalografía por Rayos X , Ligandos , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Modelos Moleculares
15.
J Control Release ; 154(2): 156-63, 2011 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-21624406

RESUMEN

For many years, a great deal of interest has been focusing on the optimization of peptide presentation by dendritic cells (DCs) using peptide-encapsulated particles, in order to enhance the immune response. Nowadays, DCs are also known to be involved in peripheral tolerance, inducing anergy or regulatory T lymphocytes. To preserve the plasticity of DCs, we formulated non-cytotoxic pH-sensitive polyion complex micelles based on an original tripartite association of polymethacrylic acid-b-polyethylene oxide, poly-L-lysine and fluorescent-peptide: OVAFITC peptide, as a model drug. We demonstrated that the OVAFITC peptide was successfully entrapped into the micelles, released into DC endosomes thanks to the pH-sensitivity property of the micelles, and efficiently loaded onto MHC class II molecules. The phenotype as well as the cytokinic secretion profile of the mature and immature DCs loaded with peptide-encapsulated micelles was unaltered by the tripartite polyion micelles. The efficient loading of the peptide by immature and mature DCs was shown by the in vitro proliferation of OVA-specific transgenic T cells. Therefore, the present results show that the tripartite polyion complex micelles can be used as efficient peptide vectors immunogically inert for ex vivo DCs engineering without modifying their intrinsic immune plasticity.


Asunto(s)
Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Sistemas de Liberación de Medicamentos/métodos , Micelas , Fragmentos de Péptidos/administración & dosificación , Secuencia de Aminoácidos , Animales , Células Cultivadas , Células Dendríticas/trasplante , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Ovalbúmina/administración & dosificación , Ovalbúmina/genética , Ovalbúmina/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Polietilenglicoles/administración & dosificación , Polietilenglicoles/metabolismo , Ácidos Polimetacrílicos/administración & dosificación , Ácidos Polimetacrílicos/metabolismo
16.
J Dermatol Sci ; 63(3): 139-47, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21664109

RESUMEN

BACKGROUND: Superficial vascular anomalies such as port wine stains are commonly treated by selective photothermolysis (SP). The endovascular laser-tissue interactions underlying SP are governed by a photothermal response (thermocoagulation of blood) and a hemodynamic response (thrombosis). Currently it is not known whether the hemodynamic response encompasses both primary and secondary hemostasis, which platelet receptors are involved, and what the SP-induced thrombosis kinetics are in low-flow venules. OBJECTIVES: To (1) define the role and kinetics of primary and secondary hemostasis in laser-induced thrombus formation and (2) determine which key platelet surface receptors are involved in the hemodynamic response. METHODS: 532-nm laser-irradiated hamster dorsal skin fold venules were studied by intravital fluorescence microscopy following fluorescent labeling of platelets with 5(6)-carboxyfluorescein. Heparin and fluorescently labeled anti-glycoprotein Ib-α (GPIbα) and anti-P-selectin antibodies were administered to investigate the role of coagulation and platelet receptors, respectively. Lesional sizes were quantified by software. RESULTS: Laser irradiation consistently produced sub-occlusive thermal coagula. Thrombosis was triggered in all irradiated venules in a thermal coagulum-independent manner and peaked at 6.25min post-irradiation. Heparin decreased the maximum thrombus size and caused thrombosis to reach a maximum at 1.25min. Immunoblocking of GPIbα abated the extent of thrombosis, whereas immunoblocking of P-selectin had no effect. CONCLUSIONS: The hemodynamic response ensues the photothermal response in a thermal coagulum-independent manner and involves primary and secondary hemostasis. Primary hemostasis is mediated by constitutively expressed GPIbα but not by activation-dependent P-selectin.


Asunto(s)
Terapia por Láser , Mancha Vino de Oporto/cirugía , Animales , Plaquetas/patología , Plaquetas/fisiología , Cricetinae , Modelos Animales de Enfermedad , Colorantes Fluorescentes , Hemodinámica , Hemostasis Quirúrgica , Humanos , Masculino , Mesocricetus , Microscopía Fluorescente , Mancha Vino de Oporto/patología , Mancha Vino de Oporto/fisiopatología
17.
Int J Pharm ; 379(2): 212-7, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19467303

RESUMEN

In the recent years, double-hydrophilic block copolymer (DHBC) micelles have appeared as potential vectors for pharmaceutical applications due to their simple preparation method in aqueous solvent. The present study aims at underscoring the strategy for the choice of the partners in the formulation of DHBC micelles presenting a good stability in physiological conditions (pH 7.4, 0.15 mol/L NaCl) and a pH-sensitivity allowing their disassembly at pH 5. Using light scattering and Laser-Doppler electrophoresis, micelles of polymethacrylic acid-b-polyethylene oxide complexing either poly-l-lysine (PLL) or an oligochitosan were characterised. Whatever the polyamine counter-polyion considered, the micelles were perfectly formed for an amine/methacrylic acid molar charge ratio of one. They were characterised by a hydrodynamic diameter of 28 nm for PLL and 60 nm for oligochitosan and by a neutral zeta potential. The stability study as a function of the pH and of the ionic strength revealed different behaviours. Oligochitosan micelles were stable until pH 7 and unstable at 0.15 mol/L NaCl. On the contrary, PLL micelles were stable in physiological conditions and disassembled at pH 5. As a conclusion, the choice of the partners to formulate double-hydrophilic block copolymer based-micelles is strategic in order to obtain well-adapted vectors applied to the pharmaceutical field.


Asunto(s)
Química Farmacéutica/métodos , Micelas , Polietilenglicoles/síntesis química , Polímeros/síntesis química , Ácidos Polimetacrílicos/síntesis química , Concentración de Iones de Hidrógeno , Polilisina/síntesis química
18.
Drug Dev Ind Pharm ; 35(8): 950-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19274590

RESUMEN

Dendritic cells (DCs) are key cells in immunology that are able to stimulate or inhibit the immune response. RNA interference has appeared of great interest to modulate the expression of immunogenic or tolerogenic molecules. In our study, pH-sensitive polyion complex micelles based on a double-hydrophilic block copolymer and poly-L-lysine were formulated to entrap a small interfering RNA (siRNA). We show that siRNA-loaded micelles were cytotolerant and efficiently endocytosed by DCs. siRNA targeting eGFP, used as model siRNA, was released into the cytosol following endocytosis of the micelles and the silencing of eGFP expression was observed in DC isolated from transgenic mice. Our results underscore the potential of pH-sensitive polyion complex micelles to formulate therapeutic siRNA for DC engineering in order to maintain the homeostasis of the immune response.


Asunto(s)
Células Dendríticas/metabolismo , Silenciador del Gen , ARN Interferente Pequeño/administración & dosificación , Animales , Citosol/metabolismo , Endocitosis , Proteínas Fluorescentes Verdes/genética , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Micelas , Polilisina/química
19.
Biomaterials ; 30(2): 233-41, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18851879

RESUMEN

Double-hydrophilic block copolymer micelles were designed as vectors for ex vivo dendritic cell engineering to improve the delivery of therapeutic molecules in such immune cells. Polymethacrylic acid-b-polyethylene oxide (PMAA(2100)-b-POE(5000))/poly-L-lysine micelles were optimised and showed a hydrodynamic diameter of 30 nm with a peculiar core organised with hydrogen bonds as well as hydrophobic domains. The micelles proved high stability in physiological conditions (pH and ionic strength) and were also able to disassemble under acidic conditions mimicking acidic endolysosomes. The efficient endocytosis of the optimised micelles tested on bone marrow-derived dendritic cells was monitored by fluorescence-activated cell sorting and microscopy analysis. Finally, the micelle biocompatibility permitted a complete control of the dendritic cell-maturation process widening the therapeutical potential of such engineered dendritic cells for cancer vaccines as well as for immunomodulation in autoimmune diseases.


Asunto(s)
Células Dendríticas/citología , Micelas , Polietilenglicoles/química , Polilisina/química , Ácidos Polimetacrílicos/química , Animales , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Endocitosis/efectos de los fármacos , Citometría de Flujo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Endogámicos BALB C , Microscopía Fluorescente , Polímeros/química , Polímeros/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...